PedNet

Newsletter
parents & patients

Data export January 2020

On behalf of the PedNet study group

Rolf Ljung, MD, PhD
Chairman of the management board

H. Marijke van den Berg, MD, PhD
Director of the PedNet Haemophilia Research Foundation
PedNet (the European Paediatric Network for Haemophilia Management) started in 1996 as a collaboration of 22 paediatricians in 16 European countries. PedNet was initiated to provide an infrastructure for clinical research on the management of children with haemophilia. Currently the PedNet study group consists of 31 haemophilia treatment centres in 18 countries.

The PedNet Registry started in 2003 and is set up as a birth cohort study, in order to prevent selection bias. It collects real-life data from all newly diagnosed children treated in the participating centres. Patients with FVIII/IX levels up to 25%, born from January 1st 2000 are included in the PedNet Registry. Annual data exports are used for analysis of ongoing studies.

The PedNet Haemophilia Research Foundation was founded in December 2016 in The Netherlands and is the legal owner of the PedNet Registry.
Management Board

Gili Kenet, MD
The National Hemophilia Center
Ministry of Health
Sheba Medical Center
Tel Hashomer, Ramat Gan, ISRAEL

Karin Kurnik, MD, PhD
Dr. v. Haunersches Kinderspital
University of Munich
Munich, GERMANY

Rolf Ljung, MD, PhD
Department of Clinical Sciences
Lund University, Lund
Department of Pediatrics and Malmö Centre for Thrombosis and Haemostasis
Skåne University Hospital
Malmö, SWEDEN

Christoph Male, MD
Department of Paediatrics
Medical University of Vienna
Vienna, AUSTRIA

Roseline d’Oiron, MD
Centre de Référence pour le Traitement des Maladies Hémorragiques (CRTH)
Hôpital Bicêtre
Kremlin Bicêtre AP-HP, FRANCE

Scientific Advisory Council

M. Teresa Alvarèz Román, MD
Unidad de Coagulopatías
Hospital Universitario La Paz
Madrid, SPAIN

Manuel Carcao, MD
Hospital for Sick Children
Toronto, Ontario, CANADA

Hervé Chambost, MD, PhD
CHU Timone
Marseille, FRANCE

Kathelijn Fischer, MD, PhD
Van Creveld Kliniek
University Medical Center Utrecht
Utrecht, THE NETHERLANDS

Christel Van Geet, MD, PhD
Service of Pediatric Haematology
University Hospital Leuven
Campus Gasthuisberg
Leuven, BELGIUM

Nadine Gretenkort Andersson, MD, PhD
Department of Clinical Sciences
Lund University, Lund
Department of Pediatrics and Malmö Centre for Thrombosis and Haemostasis
Skåne University Hospital
Malmö, SWEDEN

Chris Königs, MD, PhD
Clinical and Molecular Hemostasis,
Department of Pediatrics
University Hospital Frankfurt & Goethe University
Frankfurt/Main, GERMANY

Jayashree Motwani, MD
Department of Haematology
The Children’s Hospital
Birmingham, UK

Karin Kurnik, MD, PhD
Dr. v. Haunersches Kinderspital
University of Munich
Munich, GERMANY

Rolf Ljung, MD, PhD
Department of Clinical Sciences
Lund University, Lund
Department of Pediatrics and Malmö Centre for Thrombosis and Haemostasis
Skåne University Hospital
Malmö, SWEDEN

Christoph Male, MD
Department of Paediatrics
Medical University of Vienna
Vienna, AUSTRIA

Roseline d’Oiron, MD
Centre de Référence pour le Traitement des Maladies Hémorragiques (CRTH)
Hôpital Bicêtre
Kremlin Bicêtre AP-HP, FRANCE
Key numbers

In total
2304 patients included in registry
162 new patients included in 2019

1260 patients with severe haemophilia A
182 patients with severe haemophilia B
87 new severe haemophilia A patients
9 new severe haemophilia B patients

Included patients according to disease severity

31 participating centers in 18 countries

Gene mutations known in 85% of all patients

Total number of follow up years 18,104
Participating countries and numbers of included patients

- Austria: 69
- Belgium: 57
- Canada: 145
- Denmark: 77
- Finland: 44
- France: 331
- Germany: 306
- Greece: 132
- Ireland: 113
- Israel: 87
- Italy: 100
- Norway: 46
- Portugal: 11
- Spain: 154
- Sweden: 165
- Switzerland: 27
- The Netherlands: 156
- United Kingdom: 284

Data export January 2020
Introduction

Your child is participating in one of the largest multicentre haemophilia registries, the PedNet Haemophilia Registry. PedNet is a collaboration of 31 haemophilia treatment centres (HTCs) in 18 countries. This collaboration started in 2003. The aim is to improve the knowledge on treatment and other relevant factors in children with haemophilia. Included in PedNet are patients diagnosed in the participating HTCs who are born from January 1st 2000 onwards and who have factor VIII or factor IX levels up to 25%. The privacy of the children is protected: the individual patient data are coded by the HTC and anonymously entered in the registry. The current inclusion rate in the participating HTCs is more than 95%, this means that almost all children with haemophilia who are treated in the participating centres are part of the PedNet Registry. The PedNet Registry has developed into an effective resource helping us to answer various research questions. More information can be found on our website www.pednet.eu

This newsletter provides an overview of the status of the PedNet Registry up to January 2020 and of the research activities performed by the PedNet study group. More information on all research activities can be found in the Research program 2018-2020.

PedNet Registry

In the PedNet Registry, patients are followed during their childhood and information from their medical files is collected using a secured data capture system (Research Online).

Data of all included patients are regularly updated and they are checked for validity and completeness throughout the year. The data quality is monitored in the centres by an independent clinical research associate (CRA) (also known as clinical monitor).

The first data export for research analyses was performed in May 2011, 8 years after the start of the database in 2003. The data were used for the first satellite study of the PedNet registry, the RODIN study.

Current status

As of 1 January 2020, a total of 2304 previously untreated patients (PUPs) with haemophilia A or B are included in the study. Of these, 1260 have severe haemophilia A and 182 have severe haemophilia B (see Appendix 1).
Graphs

N Patients per birth year

Current age haemophilia A

Current age haemophilia B

- Severe A
- Severe B
- Other Severities

0-5 years | 6-11 years | 12+ years
Severe
Moderate
Mild

Data export January 2020
In the frame of the PedNet registry a special attention is given to the subgroup of patients who develop inhibitors which represent the main complication of haemophilia therapy. A study was done looking at children with severe haemophilia A born between 1990 and 2009, who developed anti-FVIII inhibitors, in order to better understand the behaviour of those antibodies and their impact on the management of these children. Inhibitors can be present at low or high titers, being the latter those rendering more challenging patients’ management. In the study we explored potential risk factors for the development of high-titer inhibitors. In the study 260 children had been included and we found that at diagnosis almost half of them had low-titer inhibitors, however during follow-up 50% progressed to high titers and only 25% maintained low titers. The progression to high-titer inhibitors was more frequent in children with family history of inhibitors, in those with severe mutations of FVIII gene and in those who received high-dose FVIII for immune tolerance induction, which is the only proven treatment strategy to attempt inhibitor eradication. These results suggest that in patients who develop low-titer FVIII inhibitors high-dose immune tolerance induction should be avoided as the initial treatment strategy in order to try to prevent the progression from low to high titers.

Working group on follow up of inhibitor patients

Data on patients with an inhibitor are limited and the results are difficult to interpret for the paediatric age groups. In the past, treatment was limited and inhibitors were diagnosed at a later age. This had major limitations, mainly on how to interpret these results in children that develop an inhibitor in the 2000s. In the PedNet study group children are included from diagnosis and due to the early start of prophylaxis inhibitors are diagnosed very early. The inhibitor patients in PedNet are carefully followed and several publications are to be expected in the coming years. Below the results of the first publication are presented.

| Title of article: | Risk Factors for the Progression from Low to High Titres in 260 Children with Severe Haemophilia A and Newly Developed Inhibitors |
| Authors: | Maria Elisa Mancuso, Kathelijn Fischer, Elena Santagostino, Johannes Oldenburg, Helen Platokouki, Chris Königs C, Carmen Escuriola-Ettingshausen, George Rivard, Ana Cid, Manuel Carcao, Rolf Ljung, Pia Petrini, Carmen Altisent, Gili Kenet, Ri Liesner, Karin Kurnik, Günther Auerswald, Hervé Chambost, Anne Mäkipernaa, Claudio Molinari, Mike Williams, Marijke van den Berg |

In the frame of the PedNet registry a special attention is given to the subgroup of patients who develop inhibitors which represent the main complication of haemophilia therapy. A study was done looking at children with severe haemophilia A born between 1990 and 2009, who developed anti-FVIII inhibitors, in order to better understand the behaviour of those antibodies and their impact on the management of these children. Inhibitors can be present at low or high titers, being the latter those rendering more challenging patients’ management. In the study we explored potential risk factors for the development of high-titer inhibitors. In the study 260 children had been included and we found that at diagnosis almost half of them had low-titer inhibitors, however during follow-up 50% progressed to high titers.

“High dose ITI should be avoided as first treatment strategy in patients with low titer inhibitors”

titers and only 25% maintained low titers. The progression to high-titer inhibitors was more frequent in children with family history of inhibitors, in those with severe mutations of FVIII gene and in those who received high-dose FVIII for immune tolerance induction, which is the only proven treatment strategy to attempt inhibitor eradication. These results suggest that in patients who develop low-titer FVIII inhibitors high-dose immune tolerance induction should be avoided as the initial treatment strategy in order to try to prevent the progression from low to high titers.
Neonatal working group

The optimal way to deliver a baby when the mother is a carrier of haemophilia is up to debate. The key question is mainly if the way of delivery may impact the risk of serious bleeds. Studies on this subject has been done but vary in results. The comparison between these studies is very complicated since they do not include the same information (i.e. some include known family history or mild haemophilia and others do not).

In the following publication, a lot of detailed information on the new-born babies with haemophilia is included to give a better insight into whether the mode of delivery has an impact on the risk of serious bleeds.

Title of article:  Mode of delivery in haemophilia: Vaginal delivery and cesarean section carry similar risk for intracranial hemorrhages and major bleeds

Authors: Nadine Gretenkort Andersson, Elizabeth Chalmers, Gili Kenet, Rolf Ljung, Anne Mäkipernaa, Hervé Chambost

What is the optimal mode of delivery for a pregnant carrier of haemophilia? How high is the risk to experience serious bleedings at birth for the child with haemophilia? And is Caesarean section safer than giving birth vaginally?

These were the main questions for our study on mode of delivery in haemophilia. To answer these questions, 926 new-born babies, 786 with severe and 140 with moderate haemophilia were included in this PedNet study. Most haemophilia babies were born by vaginal delivery (68.3%) and 31.6% by Caesarean section.

A total of 20 bleeds in the brain (2.2%) and 44 other serious bleeds needing treatment (4.8%) occurred. The number of bleeds between vaginal delivery or Caesarean section was statistical not different. When looking more detailed into the subgroups of delivery – vaginal delivery with and without instruments, Caesarean section prior and during to labour, we could identify vaginal delivery with instruments (e.g. vacuum extraction or forceps) as a clear risk factor for both bleeds into the brain and other serious bleeds. The risk was around 5-7 times higher compared to the other ways of delivery, but instrumental vaginal delivery had only to be used in 7.3% in the whole group. When comparing a planned Caesarean section – which mostly is done prior to labour, but in some cases during labour – and vaginal delivery – which is mostly done without instruments, but sometimes with instruments or sometimes has to be switched to a Caesarean section in labour – no differences were found regarding risk of bleeds. We even compared babies with a known family history of haemophilia (roughly half of the cases) with those without a family history. The same pattern could be found, and no differences were seen between the groups. In conclusion, Caesarean section and vaginal delivery are both safe options, but instrumental delivery should be avoided.

Serious bleeds at birth occur in around 6% of the haemophilia babies. For the final choice of mode of delivery, it is important to weigh in all considerations around mother and child, both haemophilia and non-haemophilia related.
Working group on inhibitor development

Inhibitor development in children with haemophilia is currently the largest side effect of treatment with clotting factor VIII. One of the factors that made comparison between studies difficult was the study endpoint. In general it is thought that inhibitors occur mostly within the first 50 exposure days to factor VIII. In the following publication the PedNet study group investigated the risk for inhibitor development at different follow up times in more than 1000 children with severe haemophilia A. Details can be found in the publication below.

Title of article: Timing of inhibitor development in >1000 previously untreated patients with severe hemophilia A

Authors: Marijke van den Berg, Kathelijn Fischer, Manuel Carcao, Hervé Chambost, Gili Kenet, Karin Kurnik, Chris Königs, Christoph Male, Elena Santagostino, Rolf Ljung

The most serious complication of haemophilia A treatment, is the development of inhibitor antibodies (inhibitors) against factor VIII (FVIII) products. Inhibitors develop in 25% to 35% of previously untreated patients (PUPs) with severe haemophilia A. Most inhibitors develop during the first 50 exposure days to FVIII. Development of an inhibitor after 50 exposure days is rare. A definition designed to separate high-risk and low-risk category patients was established in the 1990s, after the outbreaks of two product-specific inhibitors. According to this definition, previously treated patients (low-risk for inhibitor development) are patients with at least 150 exposure days.

Haemophilia treatment has changed considerably over the last decades due to the development of many new therapies. Prophylaxis has become standard of care and is started at increasingly earlier ages and with higher dosing and frequencies. The aim of this study was to define the risk periods for inhibitor development until 1000 exposure days, and to refine the definition of previously treated patients (PTPs) and the age at which patients have reached this “near-zero” risk situation. 1038 severe haemophilia A patients included in the PedNet Registry were followed until inhibitor development, or until their last exposure day. Our study shows that children (on prophylaxis) reach near-zero risk plateau of inhibitor development at 75 exposure days. This is only 1.2 years after the first exposure to FVIII. The median age at 75 exposure days was 2.3 years. These results are applicable to children who receive early prophylaxis, as almost all of the patients in the PedNet registry were started on prophylaxis very early in life. In countries where this is not the case, the timing of inhibitor development could potentially be different. In conclusion, we have strong evidence from the largest prospective cohort study of PUPs that virtually all inhibitors develop by exposure day 75. Consequently, we propose that 75 exposure days should be the cut-off to distinguish PUPs from PTPs.

“Inhibitors in children with severe haemophilia A hardly ever occur after exposure day 75”
Participants PedNet Meeting Leuven, Belgium September 2019

Marloes de Kovel
Susanna Ranta
Minna Koskenvuo
Anne Mäkipernaa
Helen Platokouki
Jayashree Motwani
Sérolène Claeyssens
Christoph Male
Maria Elisa Mancuso
Kathelijin Fischer
Elena Santagostino
Rolf Ljung
Veerle Labarque
Hervé Chambost
Anne Rafowicz
Heidi Glosli
Karin Kurnik
Mutlu Kartal-Kaess
Roseline d’Oiron
Ella van Hardeveld
Christel Van Geet

Martina Bühlren
Nadine Gretenkort Andersson
Anne Mäkipernaa
Minna Koskenvuo
Helen Platokouki
Jayashree Motwani
Sérolène Claeyssens
Christoph Male
Maria Elisa Mancuso
Kathelijin Fischer
Elena Santagostino
Rolf Ljung
Veerle Labarque
Hervé Chambost
Anne Rafowicz
Heidi Glosli
Karin Kurnik
Mutlu Kartal-Kaess
Roseline d’Oiron
Ella van Hardeveld
Christel Van Geet

PedNet - Newsletter parents & patients 2020
Publications* PedNet study group since 2017


* For full publication list see www.pednet.eu/publications

### Abstracts & Presentations

<table>
<thead>
<tr>
<th>Conference</th>
<th>Location</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAHAD 2018</td>
<td>Madrid</td>
<td>Oral</td>
<td>Inhibitor incidence in PUPs with severe haemophilia B is higher than usually reported; data from the PedNet registry</td>
</tr>
<tr>
<td>EAHAD 2018</td>
<td>Madrid</td>
<td>Poster</td>
<td>Does blood group O influence inhibitor development? Data from the PedNet registry</td>
</tr>
<tr>
<td>WFH 2018</td>
<td>Glasgow</td>
<td>Oral</td>
<td>Inhibitor incidence in 1083 PUPs with severe haemophilia A treated with class Recombinant or with class Plasma-derived products is similar; Recent data from the PedNet study group</td>
</tr>
<tr>
<td>ASH 2018</td>
<td>San Diego</td>
<td>Poster</td>
<td>99.3% of Inhibitors in Severe Hemophilia a Develop before Exposure Day 75. Time to Change Definition of Previously Treated Patients; Data from 1038 Patients with Severe Hemophilia a of the Pednet Registry</td>
</tr>
<tr>
<td>EAHAD 2019</td>
<td>Prague</td>
<td>Oral</td>
<td>Until what age should we worry about inhibitors? New data from the PedNet registry on 1038 PUPs with severe hemophilia A followed from the first until over 1000 exposure days</td>
</tr>
<tr>
<td>EAHAD 2020</td>
<td>The Hague</td>
<td>Poster</td>
<td>Time to negative inhibitor titre in severe haemophilia A patients with low titre inhibitors is similar regardless of ITI treatment; Data from PedNet cohort</td>
</tr>
</tbody>
</table>

---

For full publication list see [www.pednet.eu/publications](http://www.pednet.eu/publications)
Sponsor page

The PedNet foundation receives unrestricted funding from several companies. This means, that there are no restrictions to the way the PedNet group analyses the data and publishes the results. The PedNet group is scientifically independent.

Current sponsors are:
- Bayer AG
- Biotest AG
- CSL Behring GmbH
- Hoffmann-La Roche
- Novo Nordisk Health Care AG
- Pfizer SRL
- Swedish Orphan Biovitrium AB
- Takeda

Correspondence
PedNet Haemophilia Research Foundation
Mollerusstraat 1
3743 BW Baarn
The Netherlands
info@pednet.eu
Study staff

Marijke van den Berg
Director

Ella van Hardeveld
Study coordinator

Marloes de Kovel
Research assistant

Aimée-Claire van Haaster
Research assistant

Elsbeth de Boer-Verdonk
Data manager
Appendix 1  Flowcharts January 2019

PedNet Birth Cohort 1 (2000 - 2009)
31 centres

N = 1231

Haemophilia A 1044
Haemophilia B 187

Severe 661
Moderate 125
Mild 258

Severe 87
Moderate 46
Mild 54

PedNet Birth Cohort 2 (2010 - 2019)
31 centres

N = 911

Haemophilia A 751
Haemophilia B 160

Severe 512
Moderate 100
Mild 139

Severe 86
Moderate 41
Mild 33

Appendix 2  Flowcharts January 2020

PedNet Birth Cohort 1 (2000 - 2009)
31 centres

N = 1246

Haemophilia A 1054
Haemophilia B 192

Severe 662
Moderate 127
Mild 265

Severe 88
Moderate 46
Mild 58

PedNet Birth Cohort 2 (2010 - 2019)
31 centres

N = 1058

Haemophilia A 872
Haemophilia B 186

Severe 598
Moderate 109
Mild 165

Severe 94
Moderate 51
Mild 41